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E D I T O R I A L

Systematic way to understand and classify the shared- room 
airborne transmission risk of indoor spaces

The COVID- 19 pandemic has brought a new appreciation of the 
importance	of	 airborne	disease	 transmission.	Airborne	 transmis-
sion is caused by the inhalation of pathogen- containing aerosols 
that are produced by an infected person.1 Before the pandemic, 
the main accepted airborne diseases were tuberculosis, measles, 
and	 chickenpox.	 At	 the	 start	 of	 the	 pandemic,	WHO	 concluded	
that COVID- 19 was a contact/droplet/fomite disease, understood 
to mean either direct physical contact, or a spray of ballistic larger 
particles that impact on eyes, nostrils, or mouth, or are picked 
up by hands and delivered to the same body parts.1,2	However,	
it has become clear that COVID- 19 really is a predominantly air-
borne disease.3,4	 A	 re-	examination	 of	 literature	 evidence	 also	
concluded that all or almost all transmissible respiratory diseases 
are	airborne,	including	influenza,	SARS,	MERS,	and	rhinovirus.5 In 
hindsight, this is not so surprising: respiratory diseases infect the 
respiratory system, and aerosols of pathogen- containing respira-
tory fluid and saliva are generated when breathing, talking, singing, 
shouting, coughing, or sneezing. Inhalation of those aerosols leads 
to their deposition in the respiratory tract of susceptible people, 
potentially initiating infection.5	 A	 smaller	 fraction	 of	 COVID-	19	
transmission may occur through either deposition of respiratory 
aerosols on the eyes, large droplet spray, direct contact (e.g., kiss-
ing), or through inhalation of aerosols containing fecal material or 
emitted from resuspension of fomites. In principle, surface touch 
(fomites) can also lead to infection, although with low probability.6

1  |  THE EMISSION PLUS DILUTION 
DOMAINS OF AIRBORNE TR ANSMISSION

There are four spatial domains of airborne transmission:

a. Indoors in close proximity, where the respiratory jet of the in-
fected is inhaled by the susceptible with limited dilution.

b. Indoors in a shared- room, where the exhaled air is substantially 
diluted into a room, and is inhaled over time by people who are 
not in close proximity to the infected person.

c. Longer- range indoors, where the infected and susceptible do not 
occupy the same room at the same time.

d. Outdoors.

Note that much of the literature lumps (b) and (c) under “long- 
range”, but this finer classification7 is advantageous to the discussion. 
Transmission cases from all of these modes have been documented 
for COVID- 19. Close proximity airborne transmission is known to be 
important based on contact tracing, and is reduced with measures 
such as physical distancing.8,9 Shared- room airborne transmission 
appears to be the dominant cause of superspreading events.7,10 
Contact tracing is typically only performed for close proximity sit-
uations, which has led some researchers to posit that shared- room 
superspreading	is	minor.	However,	this	“lamppost	science”11 is con-
tradicted by extensive evidence that show that superspreading has 
played a major role in the spread of the pandemic.7,10 Longer- range 
transmission appears to be less common,9 but it has been docu-
mented multiple times in, for example, quarantine hotels and apart-
ment buildings.12 Outdoor transmission is possible but much lower 
than for indoor locations9,13 despite similar or smaller interpersonal 
distances,14,15 and typically only observed in close proximity.

The same patterns are observed for other airborne diseases, 
with those less contagious (e.g., tuberculosis) favoring transmis-
sion in close proximity. Less transmissible airborne diseases are less 
prone to shared- room superspreading or longer range transmission, 
but these can be observed especially for long exposure times in 
poorly ventilated environments.16 In contrast, the most transmis-
sible diseases (e.g., measles and chickenpox) cause more frequent 
shared- room superspreading and longer range events.17

This pattern for different airborne diseases and distances/di-
lutions can be generally understood by the dominant impact of 
just three factors, whose understanding guides the avenues of 
intervention:

 (i) Different diseases differ greatly in the average rate of emission 
of airborne pathogen infectious doses (“quanta”, defined as the 
amount	of	pathogen	 inhaled	that	will	 result	 in	 infection	for	63%	
of susceptibles) for individuals performing a given activity. Largest 
emission is observed for measles, intermediate for COVID- 19, and 
lower for tuberculosis.7,18 The emission level also changes substan-
tially across different infected individuals and different activities.

 (ii) The likelihood of transmission is strongly modulated by the ef-
fective dilution of the exhaled air before it is inhaled. Increasing 
dilution characterizes the transition from close proximity (lower 
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dilution) to shared- room air (medium) to longer range (high in 
most situations) to outdoors (very high under most situations, 
except in close proximity).9

	(iii)	Exposure	time.

The quantitative analysis of the interplay of emission strength, 
dilution, and time requires a sufficiently accurate characterization of 
the	disease.	Many	COVID-	19	superspreading	events	have	been	doc-
umented in the literature with all of them being potentially explained 
by airborne transmission. To the best of our knowledge, no peer- 
reviewed analysis of any individual superspreading event has sup-
ported non- airborne transmission. Recently, Peng et al.7 have shown 
(Figure 1A) that all the literature events that had complete information 

for airborne investigation are consistent with shared- room super-
spreading (with the assumption that air in the room mixes faster than 
the duration of the event). Their quantitative analysis, which is consis-
tent	with	the	emission	estimates	of	Mikszewski	et	al.,18 allows extend-
ing the estimation of the probability of infection to other conditions.

Figure 1B illustrates the interplay of pathogen emission strength 
and effective dilution (for a constant exposure time) on the prob-
ability of airborne infection. Figure SI- 4 in the Supplementary 
Information illustrates the effect of exposure time. These figures are 
consistent with the following observed epidemiological trends:

● Transmission probability decreases with increasing distance 
between people in close proximity.8

F I G U R E  1 (A)	Attack	rate	(i.e.,	the	
fraction of susceptible people who are 
infected in a given event) of COVID- 19 
(wild type) in literature superspreading 
events vs. the relative infection risk 
parameter (see text); adapted from Peng 
et al.7 Note that the model assumes that 
a single infector was present, which is 
appropriate for these superspreading 
events. (B) Typical ranges of dilution 
factors for different shared- room air, 
close proximity, and outdoor situations; 
and estimated probability of airborne 
transmission for each susceptible 
individual present for a 1 h exposure 
to an infected individual for different 
diseases (solid line: typical very infective 
individuals from superspreading studies 
in the scientific literature; dashed line: 
typical infected individuals with median 
emission	rates)	using	the	Wells–	Riley	
infection model7; emission rates from 
Refs. [7,	18] dilution factor ranges for 
close proximity and shared- room air 
situations estimated from Refs. [7,	20,	21] 
and CO2 measurements in our laboratory; 
COVID-	19	WT	refers	to	the	wild	type	
SARS-	CoV-	2	variant	from	the	early	
epidemic, values are higher for omicron 
BA.1	variant	by	an	estimated	factor	of	
~2.5. See Supplementary Information 
for the choice of the values shown in 
the graph. Versions of this figure with a 
logarithmic vertical axis, with different 
exposure times, with an estimate of the 
SARS-	CoV-	2	omicron	variant,	and	with	
some example mitigations are shown in 
Figures SI- 3 to SI-	6 in the Supplementary 
Information section
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●	 Many	infected	people	do	not	transmit	to	anyone,	but	a	minority	(likely	
those with higher pathogen emission and present in lower dilution 
and/or higher exposure time situations) can infect many others.10

● For shared- room transmission, different location and activity 
combinations differ greatly in their inherent risk.7 Superspreading 
occurs in less- ventilated indoor environments where pathogen 
emission rates are also high.7,9,13

●	 Any	airborne	disease	for	which	infection	in	shared-	room	air	is	ob-
served will be much more contagious in close proximity.16,17,19

●	 Although	 transmission	 probability	 is	 highest	 in	 close	 proximity,	
more people are present in shared- room situations than in close 
proximity, and thus both modes of transmission are important.7,10

● The trend is consistent with the decreasing transmissibility and 
superspread as the pathogen emission strength decreases from 
measles, to COVID- 19, and tuberculosis.7

● Transmission in close proximity and shared- room air can be re-
duced by ventilation and filtration, which increase the effective 
dilution ratio of exhaled pathogens significantly.

●	 Masks	 reduce	 transmission	by	providing	additional	effective	di-
lution of the pathogen content of exhaled and inhaled air. This 
reduction	can	 reach	1–	2	orders	of	magnitude	 for	high-	filtration	
well- fit masks.

● Transmission at long- range is less frequent due to much higher 
dilution, and it may be observed mostly when “unlucky” air paths 
with lower dilution and longer exposure times are present,12 for 
example, with stack flow in apartment buildings.

● Transmission outdoors in close proximity is less frequent than in-
doors due to higher dilution driven by stronger outdoor air move-
ments. Outdoor transmission is not expected or observed beyond 
close proximity.9,13

● The increase of transmission risk associated with vocalization and 
physical activity7 is substantially driven by the increase in patho-
gen emission rates (and to a lesser degree, of inhalation rates) dur-
ing these activities. Quiet breathing is expected to trend closer to 
the median cases in the graph, and loud or strong exercise activi-
ties are more likely to lead to very high emission rates. For exam-
ple, many superspreading events have been identified in choirs,7 
but none to our knowledge in libraries or movie theaters where 
quiet sedentary breathing is the norm.

Li et al.19 recently proposed that poor ventilation also worsens 
close proximity transmission, as the room air that is entrained (to 
dilute the just- exhaled air) is accumulating pathogen- containing 
aerosols over time. This effect is clear in Figure 1B, as the room- 
level dilution rates in poorly ventilated situations provide a strong 
upper limit to the dilution ratio in close proximity, that is, dilution of 
exhaled air in close proximity cannot achieve a lower pathogen con-
centration than that present in the dilution air (room air).

However,	the	prominence	of	infection	in	close	proximity	led	to	
the classification of all airborne diseases as “large droplet diseases” 
for many decades, and of COVID- 19 during much of the pandemic, 
due to a long- held historical error.16,17,22 For example measles, 
now considered the prototypical airborne disease by the medical 

community, was classified as a droplet disease until the 1980s, due 
to ease of infection in close proximity, and documented cases of lack 
of infection in shared- room air.17	We	see	from	Figure 1b that those 
epidemiological patterns are entirely consistent with close proximity 
airborne infection, combined with less frequent shared- room super-
spreading observed in some but not all cases (only when a higher 
emitting individual is present in locations with less ventilation), and 
longer range transmission being much less common, and only likely 
to be observed for a combination of high emitters, lower dilutions, 
and longer times.

Thus ease of infection in close proximity, less infection with in-
creasing distance, and superspreading with sensitivity to ventilation 
or filtration and exposure time should be interpreted as a likely sig-
nature of airborne transmission, and not as “droplet transmission” as 
traditionally done. “Droplet transmission” misinterpreted the effect of 
dilution as the effect of gravity, which would reduce transmission by 
making sprayed droplets fall to the ground near the infected person. 
The distinction is critical to understand the epidemiological patterns 
of transmission and the mitigations. Some in the medical community 
have mistakenly only considered “airborne” those diseases for which 
infection at longer range could be documented, but such a charac-
terization is inconsistent with both physics and epidemiology.

2  |  QUANTITATIVELY CHAR AC TERIZING 
THE RISK OF AIRBORNE TR ANSMISSION IN 
SHARED - ROOM AIR

While	Figure 1B is conceptually simple, to quantitatively capture the 
factors that control the probability of infection of a single suscepti-
ble individual conditional to the presence of one infector (which is 
the same as the attack rate) a more complex formulation is needed. 
Peng et al.7 showed that the conditional probability of infection in 
shared room air can be rigorously calculated (within the approxima-
tions of the model) as a function of a single parameter, the relative 
risk parameter (Hr):

where rE (rB) is the enhancement of the shedding rate of infectious 
pathogen doses (breathing rate) for an activity with a certain degree 
of vocalization and physical intensity compared to sedentary breath-
ing; fe (fi) is the penetration efficiency of pathogen- carrying particles 
through masks or face coverings for exhalation (inhalation); V is the 
volume of the space; λ is the first- order rate of removal of quanta (sum 
of λ0 by ventilation with outdoor air; λcle air cleaning devices such as 
filters and ultraviolet disinfection; λdec decay of pathogen infectivity; 
and λdep aerosol deposition); D is the duration of exposure; and rss is 
an algebraic function of the above parameters that accounts for the 
approach to steady state conditions.

These authors also showed that the total number of new infec-
tions (i.e., the reproductive number of the event) is similarly a func-
tion of the risk parameter H:

(1)Hr = rss rE rB fe fiD∕(V�)
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where Nsus is the number of susceptible people present in the event.
In terms of characterizing a new potentially airborne disease, the 

attack rate of different superspreading events can be plotted versus 
Hr similar to Figure 1A. This provides a rapid empirical characteri-
zation of the potential of a given disease for shared- room airborne 
transmission.	For	example,	 for	 the	wild	 type	SARS-	CoV-	2,	no	out-
breaks are observed for Hr ≲ 0.001 h2 m−3, the attack rate is below 
20%	for	Hr < 0.02 h2 m−3, and larger outbreaks are observed only for 
Hr > 0.05 h2 m−3. These thresholds will vary for different diseases 
depending on their contagiousness.7

3  |  MAKING SPACES SAFER FROM 
SHARED - ROOM AIRBORNE TR ANSMISSION

These results enable the possibility of rapidly estimating the risk of 
infection in shared- room air of different spaces in existing buildings, 
as well as characterizing it during planned construction of new build-
ings and refurbishment of existing buildings. Such assessments can 
inform mitigation and prevention of airborne or respiratory disease, 
including the planning of “airborne pandemic” or “high respiratory 
disease prevalence” modes of operation for different buildings.

Three critical parameters are needed for this purpose:

a.	 A	characterization	of	each	space	and	the	human	activities	in	it	(by	
the values of Hr and H).	An	online	calculator	is	available	at	http://
tinyu rl.com/covid - estim ator. Note that Hr quantifies the relative 
risk assuming the presence of a single infector, while H incorpo-
rates the effect of the number of occupants on risk.

b.	 A	 list	 of	mitigations	 that	 could	be	 implemented	 in	 response	 to	
an outbreak of airborne disease (e.g., increasing outdoor air in 
the ventilation system, opening windows, distributing masks or 
respirators, installing portable filtration devices, reducing event 
duration, reducing occupancy, moving more intense vocalization 
and exercise outdoors), from which the reduced Hr (H) under 
each of those mitigations can be calculated.

c.	 A	characterization	of	the	disease,	by	a	plot	such	as	Figure 1A.

The only parameters that may require some experimentation are 
quantifying the ventilation and filtration rates of each space, which 
can be accomplished in many cases with inexpensive portable CO2 
and particle meters.23	 With	 this	 information,	 the	 riskiest	 spaces	
can be quickly identified, as well as how much the risk is reduced 
by applying each of (and several or all of) the possible mitigation 
measures. This would allow quickly determining which spaces or 
activities should be temporarily suspended during periods of signif-
icant community transmission of a given airborne disease, vs. which 
ones can proceed with different degrees of mitigation, vs. which 
ones are low risk and do not require modifications.

For diseases that are known, for example, the current variant(s) 
of COVID- 19, the classification could be carried out immediately, and 

the	characterization	of	each	space	(by	its	Hr	and	H	without	and	with	
different	mitigations)	would	be	known.	However,	detailed	analysis	of	
more shared- room airborne outbreaks for different diseases would 
be useful, as a surprisingly low number have been documented in 
the literature. This is presumably due to the lack of expertise on ven-
tilation from most public health professionals performing the large 
majority of investigations. Collaboration of building and/or aerosol 
scientists in future epidemiological investigations of potentially air-
borne superspreading events is critical.

For a new disease, for example, a COVID- 19 variant that spreads 
differently from past ones, or the early propagation of a new patho-
gen with pandemic potential and suspected airborne transmission 
(most likely an influenza virus or coronavirus), preparation and 
rapid work could allow characterizing the potential of the pathogen 
for	 superspreading	 in	 shared-	room	 air.	 As	 enough	 superspreading	
shared- room outbreaks were reported, public health teams inves-
tigating them could quickly report their secondary attack rate and 
the values of all the key parameters to a central point of contact 
(e.g.,	WHO),	so	that	a	plot	such	as	Figure 1A could be constructed. 
This	would	have	started	to	be	possible	in	February	to	March	2020	
for COVID- 19, when multiple shared- room superspreading events 
had already been identified.7	With	 that	 information	 the	minimum	
value	of	Hr that appeared to allow significant superspreading could 
be identified and rapidly communicated. Then, the use and miti-
gation practices in different building spaces could be adapted for 
locations in which the disease was present, and depending on the 
incidence at that location. Together with other approaches such as 
publicly visible CO2 monitors in riskier locations where air is shared 
(e.g., bars, restaurants, gyms, and choirs),24 it would allow more rapid 
and efficient mitigation of the spread of new airborne diseases with 
pandemic potential.
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